Concrete, Abstract and Approximate
Quantum Computational Logics

Maria Luisa Dalla Chiara∗ Roberto Giuntini† Roberto Leporini‡

Quantum computational logics (QCL’s) are new forms of quantum logic, that represent a natural logical abstraction from the theory of logical gates in quantum computation [1, 2]. In these logics formulas denote quantum information quantities (qubits, quregisters or mixtures of quregisters), while the logical connectives are interpreted as special quantum logical gates (unitary operators of convenient Hilbert spaces). As a consequence, any formula can be regarded as an economical description of a quantum circuit [1].

The standard semantics of QCL’s does not take into account any approximation methods, which instead play an important role in a number of quantum computational problems [3]. We introduce a class of new QCL’s, called approximate quantum computational logics, where the notions of truth and of logical consequence essentially depend on an approximation-degree.

Quantum computational semantics can be generalized to an abstract version that is Hilbert-space independent. We apply this semantics to investigate the structure of musical languages, where holistic and contextual patterns play an essential role.

References

∗Dipartimento di Filosofia, Università di Firenze, Italy; e-mail: dallachiara@unifi.it
†Dipartimento di Scienze Pedagogiche e Filosofiche, Università di Cagliari, Italy; e-mail: giuntini@unica.it
‡Dipartimento di Matematica, Statistica, Informatica e Applicazioni, Università di Bergamo, Italy; e-mail: roberto.leporini@unibg.it